A first passage time problem for spectrally positive Lévy processes and its application to a dynamic priority queue
نویسندگان
چکیده
We study a first passage time problem for a class of spectrally positive Lévy processes. By considering the special case where the Lévy process is a compound Poisson process with negative drift, we obtain the Laplace-Stieltjes transform of the steady-state waiting time distribution of low-priority customers in a twoclass M/GI/1 queue operating under a dynamic non-preemptive priority discipline. This allows us to observe how the waiting time of customers is affected as the policy parameter varies.
منابع مشابه
Applying the Wiener-Hopf Monte Carlo Simulation Technique for Lévy processes to Path Functionals such as First Passage Times, Undershoots and Overshoots
In this note we apply the recently established Wiener-Hopf Monte Carlo (WHMC) simulation technique for Lévy processes from Kuznetsov et al. [17] to path functionals, in particular first passage times, overshoots, undershoots and the last maximum before the passage time. Such functionals have many applications, for instance in finance (the pricing of exotic options in a Lévy model) and insurance...
متن کاملEXACT AND ASYMPTOTIC n - TUPLE LAWS AT FIRST AND LAST PASSAGE
Understanding the space–time features of how a Lévy process crosses a constant barrier for the first time, and indeed the last time, is a problem which is central to many models in applied probability such as queueing theory, financial and actuarial mathematics, optimal stopping problems, the theory of branching processes, to name but a few. In Doney and Kyprianou [Ann. Appl. Probab. 16 (2006) ...
متن کاملOvershoots and undershoots of Lévy Processes
We obtain a new fluctuation identity for a general Lévy process giving a quintuple law describing the time of first passage, the time of the last maximum before first passage, the overshoot, the undershoot and the undershoot of the last maximum. With the help of this identity, we revisit the results of Klüppelberg, Kyprianou and Maller [Ann. Appl. Probab. 14 (2004) 1766–1801] concerning asympto...
متن کاملApplying the Wiener-Hopf Monte Carlo Simulation Technique for Lévy Processes to Path Functionals
In this note we apply the recently established Wiener-Hopf Monte Carlo (WHMC) simulation technique for Lévy processes from Kuznetsov et al. [22] to path functionals, in particular first passage times, overshoots, undershoots and the last maximum before the passage time. Such functionals have many applications, for instance in finance (the pricing of exotic options in a Lévy model) and insurance...
متن کاملUvA - DARE ( Digital Academic Repository ) On the infimum attained by a reflected Lévy process
This paper considers a Lévy-driven queue (i.e., a Lévy process reflected at 0), and focuses on the distribution of M(t), that is, the minimal value attained in an interval of length t (where it is assumed that the queue is in stationarity at the beginning of the interval). The first contribution is an explicit characterization of this distribution, in terms of Laplace transforms, for spectrally...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oper. Res. Lett.
دوره 41 شماره
صفحات -
تاریخ انتشار 2013